
Formal Verification of Distributed Programs
using Session Types and Coq

Morten Fangel Jensen

Advisors: Jesper Bengtson and Fabrizio Montesi
Submitted: June 2014

iii

Abstract

This thesis investigates one possible way of proving functional correct-
ness of distributed programs by integrating Session Types and Separa-
tion Logic. We introduce a language that has Session Type style typing
judgements inside its Hoare triples and Separation Logic predicates in-
side its Session Type protocols. The language – which builds on an
existing Java-like language built by Bengtson et al. [3] – is implemented
in Coq, which has also been used to prove properties and theorems of
the language semantics. The extended language has the new send, recv
and start primitives with which programs with multiple processes that
communicate using message-passing governed by Session Type proto-
cols can be constructed. Using Separation Logic predicates instead of
types to describe the transferred data, receivers are allowed to assume
properties proven by the sending party.

As a case-study, we introduce a version of distributed merge sort
implemented in our language and show its correctness using decorated
programs on paper. The results show that our language has the abil-
ity to reason about the functional correctness of recursive, distributed
programs using Hoare-triples and Separation Logic predicates in a way
that is similar to how non-distributed programs are verified.

Contents v

Contents

Contents v

1 Introduction 1
1.1 Contributions . 3

2 Preview 5
2.1 Method specifications . 11

3 Formalization 13
3.1 Language Syntax . 13
3.2 Memory Model . 14
3.3 Assertion Logic . 16
3.4 Operational Semantics . 21
3.5 Specification Logic . 29
3.6 Axiomatic Semantics . 31

4 Case Studies 37
4.1 Simple math server . 37
4.2 Distributed Merge Sort . 42

5 Related Work 49

6 Discussion 51
6.1 Discussion . 51
6.2 Further Work . 54

7 Conclusion 57

Bibliography 59

vi Contents

A Source Code 61
A.1 Access to Source Code . 61
A.2 Admitted Proofs . 61

B Decorated Programs 63

1

Chapter 1

Introduction

It is difficult to implement programs correctly. Knuth once pointed out
that it took 16 years from when the first version of binary search was
published until the first correct version was published [12]. Other fa-
mous bugs, like those of Therac-25 [13] and Ariane 5 [14], show that it
does not get easier when the size of the program increases. Adding in
the fact that many modern programs are distributed, opens up the pos-
sibility to further problems. Incorrect use of sending/receiving actions
can lead to deadlocks when both sides of a communication are stuck
waiting for each other indefinitely.

To ensure that non-distributed programs are bug-free, there has been
a lot of focus and research on the topic of formal verification using Hoare
logic [8] and Separation Logic [16]. Using interactive proof assistants, it
is possible to guarantee full functional correctness of some programs.
This type of reasoning is currently rather labour intensive. Even worse,
it is only possible to reason about a subset of features and programming
languages. But for some programs it is possible. A key aspect of for-
mal verifications is the predicates with which requirements for correct-
ness are defined. These predicates state properties about data contained
within programs, and these can be used to prove properties of programs
as a whole.

To help developers avoid common problems with distributed pro-
grams, researchers turned to Session Types [9]. By introducing a typing
system inspired by Linear Logic [7], it is possible to guarantee protocol
compliance within communicating programs. The protocols enforceable
by Session Types are currently limited to describing the types of the
transferred data. Knowing only the type of the transferred data makes

2 Chapter 1. Introduction

it impossible to reason about the functional correctness of programs re-
lying on this data as any properties the sender has proven will not be
conveyed to the receiver.

To be able to prove properties about transferred data, the program-
ming language model could include the ability to transfer predicates
that describe the data exchanged between sender and receiver. Without
predicates describing the transferred data, the functional correctness of
any program receiving data can not be proven.

Problem Statement

Current frameworks for reasoning about functional correctness
do not support predicates that describe data exchanged between
senders and receivers and thus do not support reasoning about cor-
rectness of distributed programs.

By integrating Session Types into the Hoare logic used to prove func-
tional correctness, protocol compliance can be proven for programs.
Furthermore, if we let Session Types protocols contain predicates instead
of only types, full functional correctness can be proven for distributed
programs. Instead of ensuring that data is of a certain type before send-
ing, the sending program must first prove the predicate that is asserted
for the data being transferred. Reversely, programs receiving data are
allowed to assume that the predicate describing the data holds.

There is an inherent mismatch between Session Types and Hoare
logic because their direction of reasoning is slightly different. In both
cases, the proof obligation is to prove that a command performs a certain
modification of the starting state. In Session Types, this could be that
the command actually performs the next action required by the protocol.
Where they differ is that with Session Types you are allowed to assume
that the continuation of the protocol will be handled by the remaining
part of the program. With Hoare logic you need to prove that the actions
of the commands result in a state where the given postcondition then
must hold. However, in this thesis we will present a model that allows
for the construction of Hoare triples that can verify protocol compliance
on a step-by-step basis. On each sending action, part of the protocol
compliance verification would be to show that the predicate describing
the data being sent holds.

1.1. Contributions 3

Hypothesis

It is possible to integrate Session Types in Hoare logic in such a way
that compliance to protocols containing predicates can be verified
step-by-step.

In this thesis we investigate a way of integrating Session Types and
Hoare logic and demonstrate how full functional correctness for dis-
tributed programs is proven.

Thesis Statement

Integrating Session Types and Hoare logic provides a good founda-
tion for the verification of distributed programs.

We will test our hypothesis by developing a language model with
Hoare logic rules that uses Session Type based predicates to reason
about network communication. We will then prove the full functional
correctness of distributed programs to show the validity of our model.

1.1 Contributions

This thesis contains three main contributions.
Firstly, we developed a language model of distributed programs. We

did this by extending the language developed by Bengtson et al. in [3].
The extension consists of adding three new primitives, send, recv and
start, and extending the memory model with a notion of communica-
tion channels. Importantly, we also show that the extension retains all
properties of the existing model.

Secondly, we created a set of Hoare-triples for reasoning about the
behavior of the communication primitives with which we have extended
our language. This allows verifying distributed programs implemented
in our language.

Lastly, we tested our model using a case study. We evaluated how to
represent and verify an implementation of a distributed merge sort as
well as other simpler programs.

The first two contributions have been implemented and mechanized
in Coq. The case study is done as a series of decorated programs pre-
sented in this thesis.

4 Chapter 1. Introduction

The contents of this thesis have been written entirely by the author.
However, the advisors were heavily involved with what the semantics
should be defined as. The language implementation, as well as all mech-
anized proofs of properties and axioms, was either pre-existing or pro-
duced by the author for this thesis.

Appendix A contains information on how to access the Coq source-
code as well as a list of admitted lemmas.

5

Chapter 2

Preview

To demonstrate how our logic can be used to verify programs involving
network communication, we have chosen a naive distributed implemen-
tation of merge sort as our example. This naive implementation splits
the list in two and then spawns two new instances of itself to handle the
sorting of the sublists The source-code for the implementation in our
Java-like language can be seen in Fig. 2.1.

For the purpose of this thesis, we have opted to leave out the se-
quential implementations of both the split and the merge functions, but
we will later give a specification that any implementation must respect.
This thesis is an extension of an existing Java-like language introduced
by Bengtson et al. in [3], and this language already allows for verification
of such functions. Instead we focus on the distributed aspect, which is
where our contributions lie.

The existing Java-like language relies on Hoare logic, which was in-
troduced by Hoare in [8] to prove the functional correctness of pro-
grams. Programs are proven on a line-by-line basis through a language-
dependent set of Hoare-triples. These triples are normally written in the
form {P}c{Q}, where P is a precondition, c is a command and Q is a
postcondition. Hoare-triples only deal with partial correctness, and the
triple reads "if P holds in the initial state, and if c terminates, then Q
holds in the resulting state". It is important to note that if c does not
terminate, Hoare logic offers no insight as to what happens.
The definition of triples is often extended with a notion of safety, which
implies that the command does not lead to a faulty state. So a side-

6 Chapter 2. Preview

protocol p :
?i, {List i xs}.
!o, {List o ys∧

Sorted_of xs ys}.
ε

class MergeSort {
method split(l) {

...
}
method merge(l1, l2) {

...
}
method sort(l) {

x = start MergeSort::MS p;
send x l;
s = recv x;
return s
}

method MS(x) {
l = recv x;
if l.length() ≤ 1 {

send x l
} else {

t = MergeSort::split l;
ll = t.fst;
lr = t.snd;
xl = start MergeSort::MS p;
xr = start MergeSort::MS p;
send xl ll;
send xr lr;
sl = recv xl;
sr = recv xr;
s = MergeSort::merge(sl, sr);
send x s
};
return null
}
}

Figure 2.1: Source code for our distributed merge sort example

condition is added to the triple that ensures that if P holds in the initial
state, then c can not result in a faulty state.

There is a shared set of Hoare-triples that are applicable to most
imperative programming languages. These cover primitives such as se-
quencing, if-else branches, loops, etc. For instance, we can define a
sequencing rule such that we can reason about programs consisting of
multiple commands that applies to most imperative languages:

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

Rule-Seq

To make reasoning about mutable data structures located on the heap
feasible, Reynolds introduced Separation Logic in [16]. A key part to

7

Separation Logic is the separating conjunction – denoted by ∗ – which
says that the two parts of the conjunction hold in disjoint parts of the
heap [16, 17]. This allows us to create predicates of the form α ∗ β, which
means that α and β must hold in separate parts of the heap. The rules
for reasoning within Separation Logic are described in Fig. 2.2

P ∗Q ` Q ∗ P (P ∗Q) ∗ R ` Q ∗ (P ∗ R)
P ∗Q ` R

P ` Q −∗ R

P ` Q −∗ R
P ∗ R ` R

P ` Q
P ∗ R ` Q ∗ R P ∗ true ` P P ` P ∗ true

Figure 2.2: The rules our Intuitionistic Separation Logic must satisfy

The most basic Separation Logic predicate is the pointsto predicate,
which is written in the form v 7→ v′. In classical Separation Logic the
predicate holds if the heap it is evaluated in is a singleton heap con-
taining only one entry v′, at the address v. If you were to use nor-
mal conjunctions, the assertion x 7→ v′ ∧ y 7→ v′′ would imply that
x = y ∧ v′ = v′′ because both parts of the conjunction requires a single-
ton heap. Thus, the only way to construct a singleton heap such that
both pointsto-predicates holds is if the predicates talk about the same
element. In Intuitionistic Separation Logic there are no restrictions on
what else the heap might contain. On the other hand, the assertion
v 7→ v′ ∗ v 7→ v′′ is contradicting because the heaps for each pointsto
needs to be distinct but both needs to contain the address v.

As we mentioned earlier, we are able to reason about the functionality
of the omitted methods split and merge using Separation Logic. But there
is currently no way to reason about the primitives send, recv and start,
which are the three additions to the language we propose.

To help reasoning about network communication, Honda et al. intro-
duced the concept of Session Types in [9] which is inspired by Linear
Logic, introduced by Girard in [7]. Session Types were later extended
with subtypes by Gay & Hole in [6].

Session Types use the notion of protocols, which describe the net-
work communication that needs to be performed on channels. In the

8 Chapter 2. Preview

example program given in Fig. 2.1, we define such a protocol on the
first line of the program. Having to explicitly define protocols is not
uncommon within Session Type implementations and can also be seen
in, e.g., Session-J as introduced by Hu et al. in [10], but in Section 6.1.1
we will discuss our reasons for requiring explicit protocol definitions.

The standard syntax of Session Types can be seen in Fig. 2.3. The
inhabitants of the transferable types depend on the implementation of
Session Types but are often defined to be the union of the implementa-
tion language’s native types and S. As visible in our example program
from Fig. 2.1, we use a slightly different syntax. Instead of denoting
the data to transfer by way of its type(s) ,[T1, . . . , Tn], we use a tuple
consisting of a variable name and a predicate which describes the data.

S ::= ε terminated session
| ?[T1, T2, . . . , Tn].S input
| ![T1, T2, . . . , Tn].S output
| &〈l1 : S1, . . . , ln : Sn〉 branch
| ⊕〈l1 : S1, . . . , ln : Sn〉 choice
| µT.S recursive protocol

T, T1, . . . , Tn ∈ transferable types

Figure 2.3: The standard syntax of Session Types [6, Fig. 1]

Having predicates in Session Type protocols allows our protocols
to define more information about the transferred data. For instance,
the protocol ?z, {P z}.T can be read as "receive a z where the assertion
P z holds, then continue as protocol T". The variable name acts as a
placeholder for the value that is sent or received. So if the channel x
has the Session Type ?z, {P z}.T, after calling recv x y, we will know
the predicate P y because the placeholder z has been substituted for the
variable we stored the value in: y.

In the method sort from our example, we need to start MergeSort::MS
as a new process and setup a communication channel to it. To reason
about the functionality of start, we again turn to Session Types and its
definition of when two processes can communicate. In Session Types,
two processes can communicate iff the two processes’ channels have
protocols that are each others dual. The intuition is that dual protocols

9

ε = ε

T = T
?[T1, T2, . . . , Tn].S = ![T1, T2, . . . , Tn].S

![T1, T2, . . . , Tn].S = ?[T1, T2, . . . , Tn].S

&〈l1 : S1, . . . , ln : Sn〉 = ⊕〈l1 : S1, . . . , ln : Sn〉

⊕〈l1 : S1, . . . , ln : Sn〉 = &〈l1 : S1, . . . , ln : Sn〉
µT.S = µT.S

Figure 2.4: The dual of a Session Types protocol [6, Fig. 2]

are the opposite of each other, so when one party expects to send, the
other expects to receive, etc. The rules for duality can be seen in Fig. 2.4.

In start, after we have started the method MS with the protocol p,
the local channel x will have the protocol p. The started method – MS
– will receive a channel with the protocol p as its sole argument. A
requirement imposed by start is that when the method terminates, all
channels it received or started itself must be terminated.

If we look at sort, we see all three new primitives in use. First, start
is used to create the merge sort process. Because the channel has the
dual protocol of p, the first action is to send a list. Assuming that the
argument passed to sort is a list, then proving the List-predicate from the
protocol is trivial. The List l xs-predicate will be formally defined later
but holds when the object pointed to by l contains the logical list xs. By
calling recv, we will not only receive a new list, but also the predicate
Sorted_of xs ys1 informing us that the contents of the received list, ys, is
the sorted version of the list we sent, xs. Thus, when sort returns the
received list, we are able to prove that the method as a whole returns
the sorted version of the list given as an argument.

The actual implementation of merge sort is in the method MS. The
method is started as a new process with the protocol p by start and then
immediately performs the receive-action to retrieve the list it is sup-
posed to sort. If the list is empty or a singleton list, it is by definition

1The Sorted_of-predicate will be formally defined in Def. 3.8.

10 Chapter 2. Preview

sorted, in which case we simply return the list again. The predicate de-
scribing the data we are sending is ∃ys, List l ys∧ Sorted_o f xs ys, which
holds if we send back a list representing the sorted version of xs. As xs
contains zero or one element(s), xs itself ensures that the predicate holds.
The send also terminates the protocol and fulfills the requirement from
start that all channels have finished their protocols.

If the list contains multiple elements, we need to merge sort the list.
This is done by splitting the list into a left and right part, which gets
stored in the variables ll and lr. The method then starts off two MS-
subprocesses and sends the lists to these. We know from the protocol
that the lists we receive back from the subprocesses will be sorted, so we
can simply merge the two received lists into the final sorted list. This
merged and sorted list we can now send back. Once we have completed
the final send, we know that both the protocol of the initial channel, as
well as the protocols of the two subprocess channels, have terminated,
which fulfills the termination-requirement from start.

MS instance PrightPleft

l

ll

lr

sl

sl

s

Figure 2.5: A graph showing the communication flow in the distributed merge sort example

The flow of data between an instance of MS and its two subprocesses,
denoted Ple f t and Pright, can be seen in Fig. 2.5. It is clear from this
diagram that the two subprocesses can perform their sorting in parallel,
which allows us to call our implementation distributed.

2.1. Method specifications 11

2.1 Method specifications

When verifying the functional correctness of programs, the usual ap-
proach is to create mathematical specifications that each method of the
program must respect. We define functional correctness to mean that
the function satisfies its specifications, which means that the verification
is only as useful as the given specifications. Once every function satis-
fies its specification, full functional correctness of the program has been
proven.

We write specifications for method on the form C::m(ā) 7→
{P}_{r. Q}. The exact definition will be given later in Def. 3.17, but
it can be thought of as meaning "If you know P, then after you call C::m
with the arguments ā, you will known Q". The postcondition can rely
on the return-value, named r.

The method split has to take a list and split it into two lists. This can
be represented by the following method specification:

Split_spec , ∀xs, MergeSort::split(l) 7→ {List l xs}_
{r. ∃r1 r2 xs1 xs2, r.fst ↪→ r1 ∗ List r1 xs1 ∧ |xs1| ≥ 1 ∗

r.snd ↪→ r2 ∗ List r2 xs2 ∧ |xs2| ≥ 1∧ xs = xs1 ++ xs2

The predicate v. f ↪→ v′ is a slight variation of the pointsto-predicate,
which will be formally defined in Def. 3.6. It holds iff the entry v′ is
located in the heap address v. f .
The specification can be read as indicating that it takes a list representing
xs and produces a pair of lists that represents xs1 and xs2, where the two
lists combine to form xs. It is never specified that we would prefer the
lists to be split into two roughly equal length lists. But as long as neither
of the lists are the empty list, nil, then our merge sort implementation
will finish.

The specification for the merge-method can be given as the following:

Merge_spec , ∀xs1 xs2 ys1 ys2, MergeSort::merge(l1, l2) 7→ {List l1 ys1∗
List l2 ys2 ∧ Sorted_of xs1 ys1∧
Sorted_of xs2 ys2}_
{r. ∃ys, List r ys ∧ Sorted_of (xs1 ++ xs2) ys}

It can be read as producing a sorted list containing xs1 ++ xs2, if
given two sorted lists where one contains xs1 and the other xs2.

12 Chapter 2. Preview

Our distributed merge sort needs to receive a list, and then return the
sorted list. So the protocol, which we call MSP, for communicating with
an instance of MergeSort::MS is:

MSP , ?i, {List i xs}.!o, {List o ys ∧ Sorted_of xs ys}.ε

With the protocol established, we can define the precondition which
must hold before the method specification for MergeSort::MS can be
proven. This precondition is x : MSP, where predicates of the type c : T,
holds when the channel c has the Session Type T. We also know that
every channel must be terminated when MergeSort::MS finishes, which
we can express using the predicate all_ST : ε.

A requirement to calling start is that the protocol exists and is equal
to the Session Type that the method expects. So the method specification
needs the assumption p : MSP to ensure that we can start the MS sub-
processes and communicate with them according to the MSP-protocol.
Thus the specification is

MS_spec , p : MSP ` MergeSort::MS(x) 7→ {x : MSP}_{r. all_ST : ε}

The last specification we need is the specification that any users of our
merge sort will rely on: The specification for the method sort. It needs to
take a list as its argument and return a sorted equivalent. To do this, the
protocol p must exists and the method MS must be follow and complete
the protocol MSP.

The specification for sort thus becomes the following:

Sort_spec , p : MSP ` MergeSort::sort(l) 7→ {List l xs}_
{r. ∃ys, List r ys ∧ Sorted_of xs ys}

Using our language and its Hoare-triples, it is possible to show that
the implementation of distributed merge sort shown in Fig. 2.1 con-
forms to the above four specifications. As we believe that the specifi-
cations are valid, it implies that, if the specifications are followed, our
distributed merge sort implementation has full functional correctness.

Theorem 2.1 (Distributed Merge Sort). The implementation of distributed
merge sort given in Fig. 2.1 conforms to the specification Merge_spec ∧
Split_spec ∧ Sort_spec ∧MS_spec.

The next chapter will formalize our language, and, in Chapter 4, we
show decorated programs that shows the validity of the claim in the
theorem above.

13

Chapter 3

Formalization

So far we have been somewhat vague in what all the constructions and
predicates mean. This section serves to make precise all aspects of our
language which involve defining its operational and axiomatic seman-
tics. Our case-study relies on the Hoare-triples and predicates defined
in this section to verify the correctness of our example programs.

3.1 Language Syntax

The syntax of our language is almost identical to the original syntax
described by Bengtson et al. in [3], except for our addition of the prim-
itives start, send and recv which we introduced in the previous section.
The entire syntax of our language can be seen in Fig. 3.1.
Between the publication of [3] and the beginning of this thesis, the exist-
ing model was modified to use a deep embedding of expressions instead
of the shallow embedding described in the paper. So the published for-
malization of the existing model has the grammar for e missing.

The language is weakly typed, and values are defined as a union
of integers, booleans, object-pointers, array-pointers, channel identifiers
and null. There is a casting mechanism in place which uses a default
value if the casting could not be performed.

As visible from Fig. 3.1, the protocol map is not currently repre-
sented in the syntax of the program. Instead we rely on predicates spec-
ified on the left-hand side of our method specifications. The predicates
we use to reason about the protocol map will be given later. It would,
however, be straightforward to change the definition of P such that it
includes the protocol map. The reason why the protocol map is left out

14 Chapter 3. Formalization

P ::= C∗

C ::= class C { f ∗ (m(x̄){c; return e})∗ }
c ::= x = alloc C | x = e | x = y. f | x. f = e | x = y.m(ē)
| x = C::m(ē) | skip | c1; c2 | if e {c1} else {c2}
| while e {c} | assert e
| x = start C::m p | send x y | y = recv x

e ::= v | x | e + e | e− e | e ∗ e | e ∧ e
| e ∨ e | ¬e | e < e | e = e

x, y ∈ variable-names, f ∈ field-names, v ∈ values,
C ∈ class-names, p ∈ protocol-identifiers

Figure 3.1: The syntax of our language

of the program definition is that we hope to later evolve the language
such that the protocol map is no longer required.

3.2 Memory Model

The memory model of our language is almost identical to that of the
model we are extending. Both the notion of the stack and heap come
directly from the existing model, but, because the model has evolved
since it was described in [3], we have both definitions reproduced here.

Firstly the stack is – as one would expect – a total mapping of variable
names to values. Since the mapping is total, we require that a default
value exists, such that a value can always be returned. We use the special
value null in case a variable name is not represented on the stack.

Definition 3.1 (stack). The stack is a function from variable-names to values.

stack , var → val

Along with the stack, Bengtson et al. introduce the notion of open
types. It is defined as open T , stack → T. Intuitively it can be thought
of as a type that requires a stack to be computed. As an example, expres-
sions can be defined as expr , open val – or in other words: expressions
that use program variables can be evaluated to a value in the presence
of a stack.

3.2. Memory Model 15

This generic definition of open types allows for an equally generic
definition of substitutions. Any open types can have their program vari-
ables substituted for values. This substitution is implemented by wrap-
ping the open type with the substitutions, such that any lookup of the
substituted variable returns the substituted value instead. We use the
notation e{v/a} to mean the expression e, where the variable a is re-
placed with the value v. There is also a notion of truncating substitutions
with the notation e{v/a} which beside substituting the variable a, also
replaces any other variable with the value null.

The definition of the heap in our memory model is taken directly
from the original model. However, the model has evolved since it was
first described in [3]. In the original paper, the heap could only contain
objects. The authors of the paper later extended it to also contain arrays.
The way the heap is now modeled is that objects are kept in one part of
the heap while arrays are kept in another disjoint part of the heap. In
other words, the heap is a pair containing an object-heap and an array-
heap.

Definition 3.2 (heap). The heap is a pair of partial functions. The first from
object-pointers and fields to values and the second from array-pointers and off-
sets to values.

heapptr , (ptr ∗ f ield) ⇀ val

heaparr , (arrptr ∗ nat) ⇀ val

heap , (heapptr ∗ heaparr)

ptr ∈ object-pointers, f ield ∈ field-names, arrptr ∈ array-pointers

If h has the type heap, we write hptr and harr to refer to the individual sections
of the heap.

We use the operator ◦ to compose two heaps into a new bigger heap
iff the two heaps are compatible. Two heaps are compatible, written
h1 # h2, if the domains of the two heaps are disjoint. We also have a
notion of a heap being the subheap of another. A heap s is said to be
a subheap of another heap h, iff there exists a compatible heap which
combines with s such that the composed heaps equals h: h w s , ∃h′, s ◦
h′ = h.

16 Chapter 3. Formalization

The only addition to the memory model of the original language we
propose is a Session Type map. This map contains the Session Type of
all active channels.

Definition 3.3 (Session type map). The Session Type map, denoted S, is a
partial mapping of channel identifiers to Session Types

S , stptr ⇀ ST

stptr ∈ channel-identifiers

Note that ST refers to our definition of Session Types which can be
found in Section 3.3.1.

The protocol map described earlier is equivalent, although it maps
from protocol-identifiers instead of channel-identifiers. We denote the pro-
tocol map with P.

Notation Both the object and array sections of the heap, along with
the Session Types and protocol map, are all implemented using maps.
We will use the following notations for interacting with these maps: If
you have a map m, a key k and a value v, then k ∈ m tests membership,
m(k) = v check that the value stored at the key k has the value v. Lastly
we use the notation m(k ← v) to assign the value v to the key k. We
use the notation [k ← v] for the singleton map containing only the key
k with the value v.

3.3 Assertion Logic

Our model has two types of logic: The assertion logic and the specifica-
tion logic. In this section we will describe the assertion logic and then
in Section 3.5 will we introduce the specification logic.

The purpose of the assertion logic is to describe predicates that cap-
ture properties that hold in a given state. The predicates used in the pre-
and postconditions of Hoare-triples are thus instances of our assertion
logic. The assertions can be thought of as functions that are passed a
state – represented by variables of the types described in the previous
section – and returns Prop, the natural type for a predicate in Coq.
The existing language contained the two assertion logics asn and sasn,
and we have added the additional logics pasn and psasn such that the
state of the Session Type map can be assessed with predicates in our
assertion logic.

3.3. Assertion Logic 17

Definition 3.4 (Existing Assertion Logic). The assertion logic, sasn, defined
by Bengtson et al. is a function from stack, programs, natural numbers and
heap to Prop. The asn-logic is downwards closed on the natural number and
upwards closed on the program and heap.

asn , P↑ →N↓ → heap↑ → Prop

sasn , open asn

The up- and downwards closures imply that the result will not
change if the the input is respectively increased or decreased. So the
upwards closure on heaps implies that any predicate that holds in a
heap h will also hold in bigger heap h′, if h′ w h. The downwards clo-
sure on the natural number – which functions as a step-index – implies
that given any lower number, the predicate will still hold. The upwards
closure on programs implies that the predicate will still hold even if
additional class definitions are introduced.

The framework which the existing language is built on top of –
Charge!, as introduced in [2] – is able to automatically infer that the
above assertion logic is an Intuitionistic Separation Logic, using type-
classes inspired by the works of Dockins et al. in [5]. This means that
P ∗ Q implies that P and Q holds in the same stack, program and step-
index but in separate parts of the heap.

The aim of this thesis is to support both assertion logic predicates in-
side Session Types, as well as Session Type judgements inside our asser-
tion logic. Fulfilling both of these requirements would lead to a circular
dependency between the Session Types definition and the definition of
our assertion logic. To avoid this, we have structured our assertion logic
in two levels. The first level is sasn, which can reason about the stack
and heap, which is what we embed within Session Types. The second
level will be introduced after we have defined our Session Types, and it
allows reasoning about the active Session Type channels.

3.3.1 Having Predicates Inside Session Types

Part of this thesis’ contributions is a way to integrate predicates inside
Session Type protocols such that properties of the transferred data can
be better specified. With the sasn assertion logic defined, we can for-
mally define our version of Session Types.

18 Chapter 3. Formalization

Currently our language only supports sending and receiving actions,
and thus does not support branching, choice or recursion. In Section 6.2
we discuss how more of Session Types could be added to our language.
The syntax we use for Session Types is

ST ::= !v, {P}.ST | ?v, {P}.ST | ε

v ∈ variable-names, P ∈ sasn

where !v, {P} denotes sending the predicate P, ?v, {P} denotes receiving
P and ε denotes the terminated protocol.

As mentioned earlier, the variable acts as a placeholder or entry-
point into the given predicate. If the channel x has the protocol !v{v =
5}.ε and the command send x y is run, the predicate to prove would
be y = 5 because the variable we are sending, y, has been substituted
for the placeholder v. The proof-obligation and substitution is formally
defined as part of the axiomatic semantics presented in Section 3.6.

Because ST is not an open type, the standard definition of substitutions
does not apply. As we want the ability to perform a substitution on the
tail of a Session Type, we create the following recursive definition of
substitution on Session Types:

ε{v/a} = ε

(!z, {P}.ST){v/a} = !z, {P{v/a}}.ST{v/a}
(?z, {P}.ST){v/a} = ?z, {P{v/a}}.ST{v/a}

Our definition assumes that each placeholder has a district name.
The substitution would apply to any later predicates that re-uses a place-
holder name, which will likely render those predicates useless. An alter-
native definition would stop the recursive substitution if the placeholder
has the same name as the variable being replaced.

With our definition of Session Types in place, we can define our ex-
tended assertion logic which is able to reason on the active communica-
tion channels.

Definition 3.5 (Extended Assertion Logic). Our extended assertion logic,
psasn, is a function from stack, protocol maps, Session Type map, programs,

3.3. Assertion Logic 19

natural numbers and heap to Prop. The logic is downwards closed on the
natural number and upwards closed on the program and heap.

pasn , P→ S→ asn
psasn , open pasn

The reason why pspec was not defined using sasn is that by hav-
ing the assertion be an open type, we can continue to use the standard
substitution and lifting functionality of the existing language.

Our definition of pasn and psasn assertions also ensures that it is
possible to embed asn or sasn assertions within them. The possibility to
embed the assertions means that all the specifications and triples from
the existing language can be easily reused.

One immediate downside to this two-layered assertion logic is that
Session Types can not contain predicates that reason about other Ses-
sion Types. But as we will discuss in Section 6.2, this does not hinder
the ability to later extend our model with delegation, although new
primitives would be needed in order to delegate channels.

Charge! – the framework used to construct the assertion logics –
currently does not support building a Separation Logic which is sep-
arate over two parameters of the logic. In our extended assertion logic,
P ∗ Q should imply that P and Q hold in the same stack, program,
protocol map and step-index, but in separate heaps and Session Type
maps. So like the existing assertion logic, our extended logic is only
separate on the heap-argument. This limitation impacts our ability to
prove the frame-rule – which will be discussed in Section 3.6 – for psasn-
assertions. As we will later discuss, this means the mechanized proof
of our frame rule has been left admitted. However, once psasn can be
constructed to be separate on both the heap and the Session Type map,
proving the frame-rule will be trivial.

3.3.2 Predicates in our Assertion Logic

In order to write method specifications for the four methods in our
merge sort example, we needed a few predicates defined in our assertion
logic. The first was the pointsto predicate. Because the assertion logic
used is upwards closed on heaps, all of our assertions are intuitionistic

20 Chapter 3. Formalization

assertions. Thus our pointsto-predicate does not imply singleton heaps
like the classic definition does.

Definition 3.6 (pointsto). v. f ↪→ v′1 (pronounced "v. f points to v′"), holds
if [(v, f) 7→ v′] is a subset of the current heap.

v. f ↪→ v′ , hptr w [(v, f) 7→ v′]

Where hptr is the pointer-section of the heap in which the assertion is evaluated.

The second assertion we rely on is the List-predicate, which we have
adapted from the List_rep-predicate given by Mehnert in [15].

Definition 3.7 (List). The predicate "List α i" holds if the data-structure in α

represents the logical list i.

Node_list α xs ,


α = null if xs = nil
∃α′, α.val ↪→ x ∗ α.next ↪→ α′ ∗

Node_list α′ xs′ if xs = x :: xs′

List α i , ∃h, α.head ↪→ h ∗ Node_list h i

We also introduce the pure assertion Sorted_o f , which describes a
relationship between two logical variables.

Definition 3.8 (Sorted_of). For all list of values xs and ys, Sorted_o f xs ys
holds if xs and ys contains the same values and ys is sorted.

All of the predicates described so far could have been implemented
in the assertion logic of the existing language, sasn, because they only
verify properties related to the contents of the stack or heap.

The next two predicates describe the Session Types of ongoing com-
munication channels and would have been impossible to implement in
the earlier model.

The first predicate shares its form with how typing judgments com-
monly look and it also has the same intuition behind it: Is a given item
of a particular type? In our case, does a channel have a given Session
Type associated with it?

1We use v. f ↪→ v′ instead of v. f 7→ v′ because our assertions are upwards closed on
heaps. Reynolds uses the definition v. f ↪→ v′ , v. f 7→ v′ ∗ true [17] which intuitively
has the same meaning as the upwards closure of heaps.

3.4. Operational Semantics 21

Definition 3.9 (channel-has-type). The predicate x : T, which implies that
the channel x is of the Session Type T, holds iff the entry for x in the Session
Type map contains T.

x : T , S(x) = T x ∈ val, type cast as a channel-identifier

Where S is the Session Type map in which the assertion is evaluated.

For the specification of methods that are startable, we need a pred-
icate for when every single protocol has terminated. We do this by
introducing the all_ST-predicate which holds iff every Session Type in
the Session Type map has a given protocol – e.g. ε.

Definition 3.10 (all_ST). The predicate all_ST : T holds iff every entry in the
Session Type map has contains T.

all_ST : T , ∀c, c ∈ S→ S(c) = T

3.4 Operational Semantics

The operational semantics define the actions performed by the com-
mands that make up the language. The operational semantics of the ex-
isting model is a big-step semantics, which means that each command
is defined by a relation containing the starting state, the command, the
resulting state and how many computational steps it took to get there.
The commonly used syntax is c, σ n σ′, which can be read as: Com-
mand c, starting in state σ results in state σ′ in n computational steps.
A special state is the state err, which is used to denote errors – e.g., a
memory access violation.

As defined in Section 3.2, the state used in the original model con-
sisted of stack× heap. In our extended model, the state also contains the
ongoing Session Types. In addition to the starting state, the command is
also given its context, which consists of the program definition as well
as the protocol map. So Definition 2 through 4 from [3] is redefined to
include this addition and thus becomes the following2:

Definition 3.11 (pre-command). A pre-command ĉ relates an initial state to
either a terminal state or the special err state:

precmd , P(P × P× stack× heap× S×N× ((stack× heap× S)] err))

2Safe never had a separate definition in [3] but was given inside the definition of
the frame property

22 Chapter 3. Formalization

We write (ĉ,P , P, s, h, t) n σ to denote that (P , P, s, h, t, n, σ) ∈ ĉ. We
consider P and P implicit and thus also write (ĉ, s, h, t) n σ to denote the
same.

Definition 3.12 (Safe). A pre-command ĉ is said to be safe if the initial state
does not lead to the special err state:

safe ĉ s h t n , (ĉ, s, h, t) / n err

Definition 3.13 (Frame property). A pre-command ĉ has the frame prop-
erty if (ĉ, s, h ◦ h f rame, t ◦ t f rame) n (s′, h′big, t′big) and safe ĉ s h t n implies
that there exists h′ and t′ such that h′big = h′ ◦ h f rame, t′big = t′ ◦ t f rame and
(ĉ, s, h, t) n (s′, h′, t′).

Using pre-commands and the frame property, we can define what it
means to be a semantic command.

Definition 3.14 (Semantic command). A semantic command is a pre-
command that satisfies the frame property and has no evaluation that takes
zero computational steps.

semcmd , {ĉ ∈ precmd | ĉ has the frame-property∧ ∀s, h, t, σ, (ĉ, s, h, t) / 0 σ}

The existing semantic commands were modified to accommodate the
addition of the Session Types to the state in a straight forward manner.
Since none of the existing commands involved any network communi-
cation, they just need to pass the Session Types of the initial state along.
The semantic commands inherited from the language by Bengtson et al.
are

id seq ĉ1 ĉ2 ĉ1 + ĉ2 ĉ∗ assume P assign x e
new x C read x y. f write x. f e call x C::m(e)with c ĉ

and the inductive constructors for the subset of commands used in this
thesis can be seen in Fig. 3.2.

One semantic command that requires some explanation is the com-
mand for method calls. The special with c ĉ-section of the command
represents the method body and its corresponding semantic command.
This single semantic command is able to represent both static and dy-
namic methods since the object reference can be passed as an additional
parameter to the method, similarly to what e.g. Python does.

3.4. Operational Semantics 23

(id, s, h, t) 1 (s, h, t)
Id-OK

(ĉ1, s, h, t) n err

(seq ĉ1 ĉ2, s, h, t) n+1 err
Seq-FailL

(ĉ1, s, h, t) n (s′, h′, t′) (ĉ2, s′, h′, t′) m err

(seq ĉ1 ĉ2, s, h, t) n+m+1 err
Seq-FailR

(ĉ1, s, h, t) n (s′, h′, t′) (ĉ2, s′, h′, t′) m (s′′, h′′, t′′)

(seq ĉ1 ĉ2, s, h, t) n+m+1 (s′′, h′′, t′′)
Seq-OK

(ĉ1, s, h, t) n (s′, h′, t′)

(ĉ1 + ĉ2, s, h, t) n+1 (s′, h′, t′)
+-OkL

(ĉ1, s, h, t) n err

(ĉ1 + ĉ2, s, h, t) n+1 err
+-FailL

(ĉ2, s, h, t) n (s′, h′, t′)

(ĉ1 + ĉ2, s, h, t) n+1 (s′, h′, t′)
+-OkR

(ĉ2, s, h, t) n err

(ĉ1 + ĉ2, s, h, t) n+1 err
+-FailR

P s

(assume P, s, h, t) 1 (s, h, t)

eval e s = v

(assign x e, s, h, t) 1 (s(x → v), h, t)

Read-OK
s y = p hptr((p, f)) = v

(read x y. f , s, h, t) 1 (s(x → v), h, t)

Read-Fail

s y = p hptr((p, f)) 6= v

(read x y. f , s, h, t) 1 err

Write-OK
s x = p (p, f) ∈ hptr eval e s = v

(write x. f e, s, h, t) 1 (s, h((p, f)→ v), t)

Write-Fail

s x = p (p, f) /∈ hptr

(write x. f e, s, h, t) 1 err

Call-FailS
∀r, C::m(p){c; return r} /∈ P

(call x C::m(e)with c ĉ, s, h, t) 1 err

Call-FailC
C::m(p){c; return r} ∈ P |p| 6= |e|
(call x C::m(e)with c ĉ, s, h, t) 1 err

C::m(p){c; return r} ∈ P |p| = |e| (ĉ, [s← e], h, t) n err

(call x C::m(e)with c ĉ, s, h, t) n+1 err
Call-FailC

C::m(p){c; return r} ∈ P |p| = |e| (ĉ, [s← e], h, t) n (s′, h′, t′)

(call x C::m(e)with c ĉ, s, h, t) 1 (s(x ← s′ r), h′, t′)
Call-OK

Figure 3.2: The constructors for the used subset of the inherited semantic commands

24 Chapter 3. Formalization

The semantics of our programming language commands are defined
by relating them to semantic commands. We, like Bengtson et al., will
use the notation

c ∼sem ĉ

for this relation. The semantic relation of the commands in our language
can be seen in Fig. 3.3.

skip ∼sem id
Skip-Sem

c1 ∼sem ĉ1 c2 ∼sem ĉ2

c1; c2 ∼sem seq ĉ1 ĉ2
Seq-Sem

c1 ∼sem ĉ1 c2 ∼sem ĉ2

if e {c1} else {c2} ∼sem (seq (assume e) ĉ1) + (seq (assume¬e) ĉ2)
If-Sem

Assign-Sem

x = e ∼sem assign x e

Read-Sem

x = y. f ∼sem read x y. f

Write-Sem

x. f = e ∼sem write x. f e

c ∼sem ĉ
x = C::m(e) ∼sem call x C::m(p)with c ĉ

SCall-Sem

c ∼sem ĉ y : C
x = y::m(e) ∼sem call x C::m(y, p)with c ĉ

DCall-Sem

Figure 3.3: The subset of utilized program commands related to their semantic commands

In order to specify the semantics of the three new language primitives,
we must give a semantic command corresponding to how the primitives
should behave. We must then show how these semantic commands re-
late to the primitives through the ∼sem-relation. The next three sections
correspond to the semantic command and relation for each of the new
primitives.

3.4.1 Send

What intuitively happens when you ask to send a variable v is that all
the data related to this variable is transferred. This is trivial in the case
of scalar data types but less clear when it comes to data structures like

3.4. Operational Semantics 25

objects or arrays. In case the variable is a pointer to a data structure, we
must transfer a subset of our heap that contains at least the object we
desire to send. The Session Type of the channel we are communicating
on must also be modified to reflect that the send has occurred.

Our model never actually transfers any data, but only identifies the
value and heap that needs to be transferred. If our language was to be
implemented, the semantics need to describe that the data is pushed to
the recipient along the indicated channel.

For send, we define the pre-command

send x v

which sends the value of v and, in the case that v is a pointer to a
data structure, a heap that contains at least this data structure. The
pre-command is defined using the following three constructors

s x = c t(c) = !z, {P}.T
∃h′, h w h′ ∧ P [z← s v] h′ n ∀h′,Dsasn P [z← s v] h′ n

(send x v, s, h, t) n+1 (s, h, t(c← T))
Send-OK

Send-FailP
s x = c t(c) = !z, {P}.T ¬P [z← s v] h n

(send x v, s, h, t) n+1 err

Send-FailC
s x = c c /∈ t

(send x v, s, h, t) 1 err

where c ∈ channel-identifiers

Common for all three constructors is that they identify the channel-
identifier c by looking up the channel x on the stack. If the channel
is not in the Session Type map t, the send will fail, which is what the
Send-FailC-constructor implies. Otherwise, we assume that the Session
Type of c will be the sending of the predicate P.

The problem for send is how to identify the subheap that needs to
be transferred. We have chosen to rely on the predicate, as it must hold
in the the transferred heap. Thus the success case finds a subset of
the heap where P holds. The assumption responsible for finding the
subheap is ∃h′, h w h′ ∧ P [z ← s v] h′ n. In case P does not hold in
the entire heap to begin with, Send-FailC evaluate the send to the err
state. This method for identifying the subheap might first seem weird
and hard to implement in a compiler. However, a naive implementation

26 Chapter 3. Formalization

could just select the entire starting heap h. If our compiler only accepts
verified programs along with the proof of correctness, the Hoare triple
for sending contains exactly the proof that P holds in the heap h. If the
compiler only accepts verified programs, the failure case will also never
be used and can thus be ignored.

The downside to utilizing the predicate to identify which subheap
to transfer is that it introduces a requirement of decidability, with the
Dsasn-predicate. What this decidability requirement implies is that the
transferred predicate must either hold or not hold in a given state. With-
out this requirement it is impossible to prove that the command has the
frame property. The decidability requirement will be formally intro-
duced in Section 3.6.2 and discussed further in Section 6.1.2.

We show that the pre-command satisfies the frame property by per-
forming a case-study on whether or not P holds in the unframed heap.
Since no constructor defines an evaluation taking zero steps, the pre-
command is a semantic command.

Theorem 3.1 (send_cmd). The pre-command send x v with the inductive con-
structors Send-OK, Send-FailO and Send-FailC is a semantic command.

The relation between the program command and the semantic com-
mand is straightforward

send x y ∼sem send x v
Send-Sem

3.4.2 Receive

For receiving, what you intuitively want to achieve is to assign a local
program variable, v, to the value that was transferred. If the transferred
value was a pointer to a data structure, you want the same data structure
to be present in your own heap and v to be a pointer to the structure.
Again, our model does not actually perform the communication, so any
implementation would have to read these from the network.

We define the following pre-command, which receives the value rv
and the heap rh from the sender on the channel x and stores the received
value in v

recv x v

with the following constructors:

3.4. Operational Semantics 27

s x = c t(c) = ?z, {P}.T ∀n, P[z← rv] rh n

(recv x v, s, h, t) 1 (s(v← rv), h ◦ rh, t(c← T))
Recv-OK

s x = c c /∈ t

(recv x v, s, h, t) 1 err
Recv-Fail

where c ∈ channel-identifiers

The requirement is that the predicate P holds in the received heap rh.
The resulting state is the received value rv pushed to the stack, the heap
extended by rh and the protocol advanced to the tail of the protocol. The
idea is that we are allowed to introduce P because the sender proved that
P held in the sent heap.

Our implementation of recv x v currently assumes that the current
and received heaps are compatible. We realize this might not always
be the case. Our model only requires that the predicate P holds in the
received heap, so, if the semantics were to be implemented, every ad-
dress in the received heap could be offset in such a way that it becomes
compatible with the current heap. The received value as well as any
pointers inside data-structures in the received heap would also need to
be updated to reflect the offset in addresses.

Because recv x v does not rely on the initial heap, proving that the
pre-command has the frame property is trivial. This leads us to the fact
that the pre-semantic command is also a semantic command.

Theorem 3.2 (recv_cmd). The pre-command recv x v with the inductive con-
structor Recv-OK and Recv-Fail is a semantic command.

The relation to the recv program primitive is equally straightforward
in that it simply unifies the variables:

y = recv x ∼sem recv x v
Recv-Sem

3.4.3 Start

The last primitive we need to define the semantics for is the start-
command. We have chosen to model it on method calls, so the semantic

28 Chapter 3. Formalization

command looks like the call-command given in [3]. We define the pre-
command

start x C::m(a) p with b b̂

which intuitively starts method m of class C with the communication-
channel instantiated in the variable a. The communication channel is
also assigned to the local program variable x. The command b is the
method-body of m, and b̂ is the corresponding semantic command.

In the success case we look up the protocol p from the protocol-map
P to the Session Type T, find an unused channel-identifier c and check
that the method C::m(a) exists in the program P . The semantic com-
mand corresponding to the method-body is used to find the resulting
state and iff this Session Type map contains only terminated channels,
the start-command succeeds. The resulting state has c added to the stack
and T added to the Session Type map.

The error cases cover either an ongoing channel – i.e. a channel that
was not terminated by the started method (Start-FailO) – or errors in
the started method – i.e. when the started method results in the err-state
(Start-FailE).

P(p) = T c /∈ t C::m(a){b; return r} ∈ P
(b̂, [a← c], emp, [c← T]) n (s′, h′, t′) ∀T′, t′(T′) = ε

(start x C::m(a) p with b b̂, s, h, t) n+1 (s(x ← c), h, t(c← T))
Start-OK

P(p) = T c /∈ t C::m(a){b; return r} ∈ P
(b̂, [a← c], emp, [c← T]) n err

(start x C::m(a) p with b b̂, s, h, t) n+1 err
Start-FailE

P(p) = T c /∈ t C::m(a){b; return r} ∈ P
(b̂, [a← c], emp, [c← T]) n (s′, h′, t′)

∃T′, T′ ∈ t′ ∧ t′(T′) 6= ε

(start x C::m(a) p with b b̂, s, h, t) n+1 err
Start-FailO

where c ∈ channel-identifiers

Similarly to recv, start does not depend on the initial heap and thus
it is trivial to prove that the frame property holds. This tells us that our
pre-command is a semantic command.

3.5. Specification Logic 29

Theorem 3.3 (start_cmd). The pre-command start x C::m(a) p with b b̂ with
the inductive constructors Start-OK, Start-FailE and Start-FailO is a se-
mantic command.

The relation between the program command start and the semantic
command is similar to method calls. It requires that b has the semantic
command b̂.

b ∼sem b̂

x = start C::m p ∼sem start x C::m(a) p with b b̂
Start-Sem

3.5 Specification Logic

The specification logic is – like the name implies – the logic in which
program, class and method specifications are written. The specification
logic that already exists from [3], spec, was based only on the program
definition and a step index. We have added the protocol map to the
specification logic, such that predicates in the specification logics can
express requirements that certain protocols must be in the map.

Like with the assertion logic, predicates in our specification logic can
be considered functions into Prop.

Definition 3.15 (Specification Logic). The extended specification logic,
pspec, is a function from protocol maps, programs and natural numbers to Prop.
The logic is downwards closed on the natural number and upwards closed on
the program.

spec , P↑ →N↓ → Prop

pspec , P→ spec

A requirement of Bengtson et al. for their language was to have the
specification logic embeddable within the assertion logic. This require-
ment explains why P is part of the definition of their assertion logic.
To ensure that specifications continue to be embeddable, our extended
assertion logic was also made to contain the protocol map P.

3.5.1 Predicates in our Specification Logic

The building-blocks for program verifications are the Hoare-triples that
cover the behavior of the program commands. As mentioned earlier, the

30 Chapter 3. Formalization

form of these triples are {P}c{Q}, where P and Q are predicates in our
assertion logic and c is a command. The intuition is that if P holds and
c terminates, then Q holds in the resulting state.

Definition 3.16 (Hoare triple). The Hoare triple {P}c{Q} holds if, given
that P holds, the command is safe and if the command terminates, it does so in
a state where Q holds.

{P}c{Q} , ∀ĉP P s h t n m, c ∼sem ĉ→ P s P tP n h→ (safe ĉ s h t n
∧ (∀s′ h′ t′, (ĉ, s, h, t) m (s′, h′, t′)→ Q s′, P t′ P (n−m) h′))

Using the Hoare-triple defined by the axiomatic semantics, it is possi-
ble to construct a triple that covers the entirety of a method-body. It is
thus possible to describe the specification of a method by saying what
Hoare-triple the method-body has.

Definition 3.17 (Method specification). A method C::m(p̄) has the speci-
fication C::m(p̄) 7→ {P}_{r. Q} if the body c of the method conforms to the
triple {P}c{Q}.

C::m(p̄) 7→ {P}_{r. Q} , C::m(p̄′){c; return e} ∈ P
∧ | p̄| = | p̄′| ∧ {P{ p̄/ p̄′}}c{Q{e.p̄/r.p̄′}}

The definition can be read as ensuring that the method is defined
in the program P , and that the specification and definition agrees on
the number of arguments. The Hoare-triple with the method-body c
and the pre- and postconditions from the specification must then hold.
The substitution serves to enable different parameter names between the
method definition and its specification. The substitution is truncating,
which means that any arguments not mentioned in the method defini-
tion will be replaced by null.

The only new specification logic predicate we have added is the pred-
icate p : T such that we can specify which protocols are present in the
protocol map.

Definition 3.18 (protocol-has-type). A protocol p is said to be the Session
Type T, iff the entry in the protocol map contains T.

p : T , P(p) = T p ∈ protocol-identifier

Where P is the protocol map in which the specification is evaluated.

3.6. Axiomatic Semantics 31

3.6 Axiomatic Semantics

To finalize the formalization of our language, we need to define the
Hoare-triples that allow reasoning about programs written in our lan-
guage. We will first cover the Hoare-triples defined by Bengtson et al. in
[3] and then we will cover the new primitives send, recv and start.

The additions we have made to the assertion and specification logic
allows the existing logics to be embedded within the new. This means
that the axiomatic semantics defined by Bengtson et al. still holds. The
mechanized proofs are slightly harder to read than the rules we present
in this thesis, as we have left all embedding implicit in this thesis. Thus,
the rules presented here are equivalent to those from Fig. 4 of [3], while
the mechanized proofs contain the explicit embeds that we have intro-
duced. The embedding serves to convert assertion predicates of either
asn, sasn or pasn into predicates in the psasn assertion logic. Because the
embedding is trivial – simply drop arguments given to the assertions –
the embedability can be automatically inferred.

The axiomatic semantics inherited from the existing language can be
seen in Fig. 3.4. We have left out the rules for reasoning about arrays as
they are not important to this thesis.

A rule that requires a little introduction is the Frame-rule, which was
first proposed by Yang et al. in [18]. The frame rule is key to modular
reasoning with Separation Logic as it allows more local reasoning. In
short, it allows the removal of predicates that talk about different parts
of the heap or Session Type map than what the command modifies.

As we have previously mentioned, it is currently not possible to con-
struct a Separation Logic out of our psasn-assertion logic that separates
both the heap and the Session Type map. Because of this, the mecha-
nized proof for the rule is left admitted.

To reason about programs containing our new primitives, we need to
define Hoare-triples covering the send, recv and start-commands. These
Hoare-triples are one of the main contributions of this thesis and sim-
ilarly to our introduction of the operational semantics, we will have a
section corresponding to each command.

32 Chapter 3. Formalization

{P ∧ e} c {P}
{P}while e {c} {P ∧ ¬e}

While

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

Seq

{e ∧ P} c1 {Q} {¬e ∧ P} c2 {Q}
{P} if e { c1 } else { c2 } {Q}

Rule-If
{P} skip {P}

Skip

P ` P′ Q′ ` Q
{P′} c {Q′} ` {P} c {Q}

Consequence

P ` e
{P} assert e {P}

Assert

{x. f ↪→ _} x. f = e {x. f ↪→ e}
Write

P ` Q ∗ x. f ↪→ _
{P} x. f = e {Q ∗ x. f ↪→ e}

Write-Frame

{P{e/x} x = e {P}
Assign

{P} x = e {∃v, x = e{v/x} ∧ P{v/x}}
Assign-Fwd

.C::m(p̄) 7→ {P}_{r. Q} | p̄| = |ē|
{x = v ∧ P{ p̄/ē}} x = C::m(ē) {Q{r.p̄/x.ē{v/x}}}

Call-Static

y : C .C::m(p̄) 7→ {P}_{r. Q} | p̄| = |ē|
{x = v ∧ P{ p̄/ē}} x = y.m(ē) {Q{r.p̄/x.ē{v/x}}}

Call-Dynamic

P ` y. f ↪→ e
` {P} x = y. f {∃v, x = e{v/x} ∧ P{v/x}}

Read-Fwd

{true} x = alloc C {∀ f ∈ fields(C). x. f ↪→ null}
Alloc

∀x ∈ fv R. c does not modify x
{P} c {Q} ` {P ∗ R} c {Q ∗ R}

Frame

Figure 3.4: Hoare-triples inherited from the existing language

3.6. Axiomatic Semantics 33

3.6.1 Receive

The simplest of the rules is the rule for receiving. Intuitively we want
the precondition to be that the channel we are receiving on has a Session
Type that starts with a receive. The postcondition should then have the
Session Type modified such that it only contains the tail, and we should
know that the predicate describing the transferred data holds. However,
as visible from the rule given in the theorem below, the postcondition is
slightly more complex.

Theorem 3.4 (rule_recv). The following Hoare-triple for receiving holds.

x 6= y

{x : ?z, {P}.T} y = recv x {∃v, P{y/z} ∧ y = v ∗ x : T{v/z}}
Recv

The reason for the more complex postcondition is twofold. Firstly the
predicate P needs to have the placeholder substituted for the received
value. Thus the predicate on the received data becomes P{y/z} instead
of just P. We use a truncating substitution to eliminate any program
variables in the predicate that are not the placeholder. Secondly we
also want to replace the placeholder variable in the predicates contained
within the tail of the Session Type. So we use v as a snapshot of the
received value and then substitute the tail of the protocol with this value.
This means that the Session Type continuation becomes T{v/z} instead
of simply T. The snapshot is required because the predicates inside
the Session Type does not depend on the stack. If the Session Type
is substituted with y, and y later changed value, this change would
propagate into the Session Type. By introducing the snapshot, whose
predicate does depend on the stack, this problem is avoided.

3.6.2 Send

If the Session Type of x starts with the sending-action of P, then we need
to prove that P holds with the placeholder substituted for the value we
are sending before we are allowed to perform the send. The postcondi-
tion of the triple is identical to that of receive. After sending the value,
the object is still present and thus the predicate still holds. As for the
Session Type, the same substitution is performed on the tail of the pro-
tocol.

34 Chapter 3. Formalization

Theorem 3.5 (rule_send). The following Hoare-triple for send is valid.

{x : !z, {P}.T ∗ P{y/z} ∧ Dsasn (P{y/z})}
send x y

{∃v, P{y/z} ∧ y = v ∗ x : T{v/z}}

Send

Decidability As mentioned under the operational semantics for send,
we require that the transferred predicate must either hold or not hold,
as the frame property of the semantic command can not be proven oth-
erwise. This is the reason why the precondition of our Send-rule con-
tains the Dsasn-predicate. By requiring a proof of decidability in the
Hoare-triple, it is arguable that if you only compile complete, verified
programs, the semantics can be implemented by a compiler.

One of the interesting properties of predicates defined in intuition-
istic logics is that they are not decidable, unlike in classical logic where
the law of the excluded middle holds. So this introduction of decidabil-
ity might seem unnecessary and limiting. In this section, we will only
explain how decidable assertions are defined, and then in Section 6.1.2
we discuss why decidability is a necessary requirement and possible
ways to get rid of it.

Definition 3.19 (Decidable). A predicate is said to be decidable iff for a given
state σ, the predicate P either holds or not.

Dγ P , ∀σ, P σ ∨ ¬P σ

Where γ denotes the name of the logic which P is written in, e.g. sasn.

Before the send-rule can be applied, the decidability of the predicate
must be proven. Without rules to reason about decidability of predi-
cates, utilizing the Hoare-triples of our language would be rather hard.
So one of the contributions of this thesis is a set of rules that allows the
construction of decidability proofs. These rules are given in Figure 3.5

The axioms allow reasoning about many common data structures
and their decidability. For instance, it is possible to prove the decid-
ability of the List-predicate that we defined in 3.7 using nothing but the
rules of Separation Logic and our decidability rules.

Theorem 3.6 (List_decidable). The List-predicate is decidable for all pointers
and logical lists.

∀p xs,Dsasn(List p xs)

3.6. Axiomatic Semantics 35

Dsasn (v. f ↪→ v′)
D-PointstoI1

Dsasn Q
Dsasn (Q ∗ v. f ↪→ v′)

D-PointstoI2

∀a,Dsasn (Q a)
Dsasn (∃a, Q a ∗ v. f ↪→ a)

D-ExistsI
Dsasn P Dsasn Q
Dsasn (P ∧Q)

D-AndI

Figure 3.5: Rules for the construction of decidability proofs

3.6.3 Start

For starting new processes and setting up the communication channel,
there are no state-dependent prerequisites. If both the protocol and the
desired method to start exist and the method has a startable specifica-
tion, then the method can be started at any time. After the method has
been started, the communication channel has the dual of the protocol
used by the started method. The Hoare triple for start is thus rather
straightforward.

Theorem 3.7 (rule_start). The following Hoare-triple for starting is valid.

.C::m(a) 7→ {a : T}_{r. all_ST : ε} p : T
{true} x = start C::m p {x : T}

Start

Because start is modeled after method-calls, intuitively you would
not expect to have a prerequisite on whether the protocol is available.
Instead you might expect that the protocol could be inferred from the
specification of the started method. As mentioned earlier, having to
statically specify the available protocols is not unheard of, although the
axiomatic semantics of our language would be simpler if this could be
avoided. The reasoning behind why we need this requirement is dis-
cussed in Section 6.1.1.

37

Chapter 4

Case Studies

To show the applicability of our language, we have performed a set of
case studies that highlights the abilities our language possesses.

First we have two variations of a very simple client-server program
that serves to illustrate both how our decorated programs look and how
the substitution within protocols can serve to propagate information
into the remaining protocol.

Finally, we will give a decorated version of our distributed merge
sort to verify that the methods live up to the specifications we gave in
Chapter 2 and thus that Theorem 2.1 holds.

Some of the decorated programs in this section have been cut short
or deliberately kept informal to make them more easily comprehensi-
ble. Longer, more formal versions are given in Appendix B. In all of
the decorated programs, there are implicit uses of both the Frame- and
Consequence-rule whenever any of the Hoare-triples are applied.

4.1 Simple math server

Our first example is a simple math server, which just adds two to a
number. It consists of a class, Sample, with two methods, client and
server. The method-body of the server can be seen in Fig. 4.1. It asks to
receive a number, adds two and then sends it back. The body of client,
shown in Fig. 4.2, starts a connection with the server-method, sends a
number and receives the answer.

To formalize the behavior of the server and client method, we have
defined a method-specification for both methods. We have chosen the

38 Chapter 4. Case Studies

a = recv x;
b = a + 2;
send x b

Figure 4.1: Method body of
Sample::server

x = start Sample::server p;
send x a;
b = recv x

Figure 4.2: Method body of
Sample::client

Session Type ?y, {y = n}.!z, {z = n + 2}.ε to describe the necessary
communication between the two processes. To represent the relationship
between the input- and output number, we use the globally quantified
logical variable n.

Server_spec , ∀n, Sample::server(x) 7→
{x : ?y, {y = n}.!z, {z = n + 2}.ε}_{r. all_ST ε}

Client_spec , ∀n, p : ?y, {y = n}.!z, {z = n + 2}.ε `
Sample::client(a) 7→ {a = n}_{b. b = n + 2}

With method-bodies and -specifications, we can start proving the
correctness of this distributed math service. First, we will show that the
method-body of server lives up to Server_spec:

Decorated Program 4.1: Sample::server living up to Server_spec

{x : ?y, {y = n}.!z, {z = n + 2}.ε}
a = recv x
{∃v, (y = n){a/y} ∧ a = v ∗ x : !z, {(z = n + 2){v/y}}.ε} =
{∃v, a = n ∧ a = v ∗ x : !z, {z = n + 2}} ⇒
{a = n ∗ x : !z, {z = n + 2}} ⇒
{a = n ∧ a + 2 = a + 2 ∗ x : !z, {z = n + 2}.ε} =
{(a = n ∧ b = a + 2 ∗ x : !z, {z = n + 2}.ε){a+2/b}}

b = a + 2
{a = n ∧ b = a + 2 ∗ x : !z, {z = n + 2}.ε} ⇒
{b = n + 2 ∗ x : !z, {z = n + 2}.ε} =

4.1. Simple math server 39

{(z = n + 2){b/z} ∗ x : !z, {z = n + 2}.ε} ⇒
{(z = n + 2){b/z} ∧ Dsasn ((z = n + 2){b/z}) ∗

x : !z, {z = n + 2}.ε}
send x b

{∃v, (z = n + 2){b/z} ∧ b = v ∗ x : ε} ⇒ {x : ε} ⇒
{all_ST ε}

Two steps in particular need some more explanation: The introduc-
tion of Dsasn and the jump x : ε⇒ all_ST ε. We are allowed to introduce
Dsasn (b = n + 2) because it represents decidability between values for
which there is decidable equality.
We are allowed to conclude that all protocols have terminated once
the protocol for channel x has terminated because we know that Sam-
ple::server will be invoked by start. And we know that start sends along
a new Session Type environment with only the single channel x. Since
we know that Sample::client does not create any new channels, we know
that x is the only channel that exists. Since we know x has terminated,
we know that all the existing channels have terminated.

We also need to show that the client method-body implements the
Client_spec, which the following decorated program shows:

Decorated Program 4.2: Sample::client living up to Client_spec

{a = n}
x = start Sample::server p

{a = n ∗ x : ?y, {y = n}.!z, {z = n + 2}.ε} =

{a = n ∗ x : !y, {y = n}.?z, {z = n + 2}.ε} =

{(y = n){a/y} ∗ x : !y, {y = n}.?z, {z = n + 2}.ε} ⇒
{(y = n){a/y} ∧ Dsasn ((y = n){a/y}) ∗

x : !y, {y = n}.?z, {z = n + 2}.ε}
send x a
{∃v, (z = n){a/z} ∧ a = v ∗ x : ?z, {z = n + 2}{v/y}.ε} =

40 Chapter 4. Case Studies

{∃v, a = n ∧ a = v ∗ x : ?z, {z = n + 2}.ε} ⇒
{a = n ∗ x : ?z, {z = n + 2}.ε}

b = recv x

{∃v, a = n ∧ (z = n + 2){b/z} ∧ b = v ∗ x : ε} =

{∃v, a = n ∧ (b = n + 2) ∧ b = v ∗ x : ε} ⇒
{a = n ∧ b = n + 2 ∗ x : ε} ⇒
{b = n + 2}

Again we rely on the decidable equality of values to introduce the
term Dsasn (a = n + 2) before attempting to send the variable a.

The method specification for client never requires that the specifi-
cation for server is defined, and without the specification the method
can not be started. As a way to introduce method specifications, we
need to introduce the concept of later, which is denoted by .(.). Later is
known from Gödel-Löb logic and work by Appel et al. in [1] and enables
both modular reasoning about programs as well as guarded recursion.
The intuition is that, under the assumption that iff some specification is
proven at a later time, this specification holds [3].

The basic rules for reasoning with later are the Löb- and Weaken-rule
shown in Fig. 4.3, and Bengtson et al. describe how they are used in the
existing language in Section 3.6 of [3]. The basic concept is that the rules
are tied to the step-index of the specification logic.

.P ` P
` P

Löb

P ` .P
Weaken

Figure 4.3: The Löb rule for the later modality

Using the Later-rule, we can introduce an assumption that the
method-specification for server exists, such that the method can be
started.

4.1.1 Information Propagation

Instead of relying on the globally quantified variable n to convey the
relationship between the received and sent number, we could also use a

4.1. Simple math server 41

program variable in the assertion for the result. So instead of having the
sent assertion be z = n + 2, it would be z = y+ 2. The program variable
y refers back to the placeholder of the input, and, as discussed earlier,
whenever a send or receive action is performed, the remaining protocol
has the current placeholder substituted for the transferred value.

An alternative specification that utilizes this propagation of informa-
tion could be the following, which is identical to the previous specifica-
tion except that the Session Type is ?y, {y = n}.!z, {z = y + 2}.ε. Note
that we still retain the logical variable n in the first predicate. As there
are no other restraints for n, it serves only to ensure that the received
variable is numerical.

Server_spec′ , ∀n, Sample::server(x) 7→
{x : ?y, {y = n}.!z, {z = y + 2}.ε}_{all_ST ε}

Client_spec′ , ∀n, p′ : ?y, {y = n}.!z, {z = y + 2}.ε `
Sample::client() 7→ {a = n}_{a = n + 2}

We can reuse the method bodies shown in Figure 4.1 and 4.2, except
of course for the protocol given to start, which now needs to be p′.
Thus we can prove that the server method-body implements the specifi-
cations Server_spec′:

Decorated Program 4.3: Sample::server living up to Server_spec′

{x : ?y, {y = n}.!z, {z = y + 2}.ε}
a = recv x
{∃v, (y = n){a/y} ∧ a = v ∗ x : !z, {(z = y + 2){v/y}}.ε} =
{∃v, a = n ∧ a = v ∗ x : !z, {z = v + 2}} ⇒
{a = n ∗ x : !z, {z = n + 2}} ⇒
...

From this point onwards, the decorated program is identical
to decorated program 4.1.

For the full decorated program of Sample::server living up to
Server_spec′, see decorated program B.1

42 Chapter 4. Case Studies

And we can show that the client-body, when it starts the protocol p′,
lives up to the specification Client_spec′:

Decorated Program 4.4: Sample::client living up to Client_spec′

{a = n}
x = start Sample::server p′

{a = n ∗ x : ?y, {y = n}.!z, {z = y + 2}.ε} =

{a = n ∗ x : !y, {y = n}.?z, {z = y + 2}.ε} =

{(y = n){a/y} ∗ x : !y, {y = n}.?z, {z = y + 2}.ε}
{(y = n){a/y} ∧ Dsasn ((y = n){a/y}) ∗

x : !y, {y = n}.?z, {z = y + 2}.ε}
send x a
{∃v, (y = n){a/y} ∧ a = v ∗ x : ?z, {z = y + 2}{v/y}.ε} =

{∃v, a = n ∧ a = v ∗ x : ?z, {z = v + 2}.ε} ⇒
{a = n ∗ x : ?z, {z = n + 2}.ε} ⇒
...

From this point onwards, the decorated program is identical
to decorated program 4.2.

For the full decorated program of Sample::server living up to
Server_spec′, see decorated program B.2

From these decorated programs, it is evident that there is no great
difference in the proofs to verify compliance to either a specification
where global quantified variables are used or one where information
propagation is used.

4.2 Distributed Merge Sort

With the simple example over, we can revisit our main example: Dis-
tributed merge sort. The implementation and specification of the ex-
ample was given in Section 2, but, for convenience, we have replicated
the specifications and relevant method-bodies here. As previously men-

4.2. Distributed Merge Sort 43

tioned, we will not prove the split or merge methods but instead just rely
on their specifications.

MSP , ?i, {List i xs}.!o, {List o ys ∧ Sorted_o f xs ys}.ε

Split_spec , ∀xs, MergeSort::split(l) 7→ {List l xs}_
{r. ∃r1 r2 xs1 xs2, r. f st ↪→ r1 ∗ List r1 xs1 ∧ |xs1| ≥ 1 ∗

r.snd ↪→ r2 ∗ List r2 xs2 ∧ |xs2| ≥ 1∧ xs = xs1 ++ xs2

Merge_spec , ∀xs1 xs2 ys1 ys2, MergeSort::merge(l1, l2) 7→ {List l1 ys1∗
List l2 ys2 ∧ Sorted_o f xs1 ys1∧
Sorted_o f xs2 ys2}_
{r. ∃ys, List r ys ∧ Sorted_o f (xs1 ++ xs2) ys}

MS_spec , p : MSP ` MergeSort::MS(x) 7→ {x : MSP}_{r. all_ST : ε}

Sort_spec , p : MSP ` MergeSort::sort(l) 7→ {List l xs}_
{r. ∃ys, List r ys ∧ Sorted_o f xs ys}

It is worth noticing that, because split needs to return two separate
lists, we rely on an anonymous class with the properties fst and snd.
A more thorough specification would also include a specification for a
tuple-class and then Split_spec could rely on this tuple specification to
return two values.

The method-body of the main distributed merge sort method, MS,
can seen replicated in 4.4.

l = recv x;
if l.length() ≤ 1{

send x l
}else{

p = MergeSort::split(l);
ll = p. f st;
lr = p.snd;
xl = start MergeSort::MS p;

xr = start MergeSort::MS p;
send xl ll;
send xr lr;
sl = recv lr;
sr = recv xr;
s = MergeSort::merge(sl, sr);
send x s;
}

Figure 4.4: Method body of MergeSort::MS

The method sort – whose method-body is replicated in Fig. 4.5 – is
used to start the whole process, and it does this simply by starting a
MS-process, sending the lists to MS and then receiving the sorted list.

44 Chapter 4. Case Studies

x = start MergeSort::MS p; send x l; r = recv x

Figure 4.5: Method body of MergeSort::sort

From the definition of sort, you could be led to believe that MS could
be simplified by replacing the start, send and recv calls inside MS with
calls to sort. Such a simplification would yield a method that behaves
identically but lacks a significant property: concurrency. Using calls to
MS would lead to sequentially sorting the two lists instead of concur-
rently having the two subprocesses sort the sublists.

As the merge sort example is more extensive than the previous sim-
ple math server example, the decorated programs in this section are
less explicit. Where the previous examples had multiple small steps be-
tween each command, these examples are kept to only two or three. In
Appendix B, they are reproduced with the same level of detail as the
previous decorated programs.

We start by showing that the method body for MergeSort::sort lives up
to Sort_spec:

Decorated Program 4.5: MergeSort::sort living up to Sort_spec

{List l xs}
x = start MergeSort::MS p
{List l xs ∗

x : ?i, {List i xs}.!o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε} ⇒
{(List i xs){l/i} ∧ Dsasn ((List l xs){l/i}) ∗

x : !i, {List i xs}.?o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε}
send x l

{(List i xs){l/i} ∗ x : ?o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε} ⇒
{x : ?o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε}

r = recv x
{(∃ys, List o ys ∧ Sorted_o f xs ys){o/r} ∗ x : ε} ⇒

4.2. Distributed Merge Sort 45

{∃ys, List r ys ∧ Sorted_o f xs ys}

For the full decorated program, see decorated program B.3

Again, we use the Later-rule to introduce the assumption of the
method-specification for MergeSort::MS, so we are able to start the new
process.

For the decorated program that shows that MS conforms to the
MS_spec specification, we introduce shorter names for the session-types.
We will use R for the protocol that has both receive and send and S for
the protocol with only the sending-action left. Thus R and S are defined
as the following:

R xs , ?i, {List i xs}.!o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε
S xs , !o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε

With these protocol-names, we can confirm that MS does conform to
the MS_spec specification with the following decorated program:

Decorated Program 4.6: MergeSort::Sort living up to Sort_spec

{x : R xs}
l = recvx

{(List i xs){i/l} ∗ x : S rs} ⇒
{List l xs ∗ x : S rs}

if l.length() ≤ 1{
{List l xs ∧ l.length() ≤ 1 ∗ x : S rs} ⇒
{List l xs ∗ x : S rs ∧ Sorted_o f xs xs} ⇒
{(∃ys, List o ys ∧ Sorted_o f xs ys){o/l} ∧
Dsasn ((∃ys, List o ys ∧ Sorted_o f xs ys){o/l}) ∗ x : S rs}

send x l
{(∃ys, List o ys ∧ Sorted_o f xs ys){o/l} ∗ x : ε} ⇒
{x : ε} ⇒ {all_ST ε}

} else {

46 Chapter 4. Case Studies

{List l xs ∗ x : S rs ∧ l.length() > 1} ⇒
{List l xs ∗ x : S rs}
p = MergeSort::split l
{p. f st 7→ r1 ∗ List r1 xs1 ∗ p.snd 7→ r2 ∗ List r2 xs2

∧ xs1 ++ xs2 = xs ∗ x : S xs}
ll = p. f st
{List ll xs1 ∗ p.snd 7→ r2 ∗ List r2 xs2

xs1 ++ xs2 = xs ∗ x : S xs}
lr = p.snd
{List ll xs1 ∗ List lr xs2 ∧ xs1 ++ xs2 = xs ∗ x : S xs}

xl = start MergeSort::MS p

{List ll xs1 ∗ List lr xs2 ∧ xs1 ++ xs2 = xs ∗ x : S xs ∗ xl : R xs1}
xr = start MergeSort::MS p
{List ll xs1 ∗ List lr xs2 ∧ xs1 ++ xs2 = xs ∗

x : S xs ∗ xl : R xs1 ∗ xr : R xs2} ⇒
{(List i xs1){i/ll} ∧ Dsasn ((List i xs1){i/ll}) ∗ List lr xs2 ∧

xs1 ++ xs2 = xs ∗ x : S xs ∗ xl : R xs1 ∗ xr : R xs2} ⇒
send xl ll

{(List i xs1){i/ll} ∗ List lr xs2 ∧ xs1 ++ xs2 = xs ∗
x : S xs ∗ xl : S xs1 ∗ xr : R xs2} ⇒
{(List i xs2){i/lr} ∧ Dsasn ((List i xs2){i/lr})∧

xs1 ++ xs2 = xs ∗ x : S xs ∗ xl : R xs1 ∗ xr : R xs2} ⇒
send xr lr

{(List i xs2){i/lr} ∧ xs1 ++ xs2 = xs ∗
x : S xs ∗ xl : S xs1 ∗ xr = S xs2} ⇒
{xs1 ++ xs2 = xs ∗ x : S xs ∗ xl : S xs1 ∗ xr = S xs2} ⇒

sl = recv xl
{(∃ys1, List o ys1 ∧ Sorted_o f xs1 ys1){o/sr} ∧ xs1 ++ xs2 = xs ∗

x : S xs ∗ xl = ε ∗ xr = S xs2} ⇒
{List sr ys1 ∧ Sorted_o f xs1 ys1 ∧ xs1 ++ xs2 = xs ∗

x : S xs ∗ xl = ε ∗ xr = S xs2}

4.2. Distributed Merge Sort 47

sr = recv xr
{List sl ys1 ∧ Sorted_o f xs1 ys1 ∗ (∃ys2, List o ys2 ∧

Sorted_o f xs2 ys2){o/sr} ∧ xs1 ++ xs2 = xs ∗
x : S xs ∗ xl : ε ∗ xr : ε} ⇒
{List sl ys1 ∧ Sorted_o f xs1 ys1 ∗ List o ys2 ∧ Sorted_o f xs2 ys2 ∧

xs1 ++ xs2 = xs ∗ x : S xs ∗ xl : ε ∗ xr : ε}
s = MergeSort::merge sl sr
{List sl ys1 ∧ Sorted_o f xs1 ys1 ∗ List o ys2 ∧ Sorted_o f xs2 ys2 ∧

xs1 ++ xs2 = xs ∗ x : S xs ∗ xl : ε ∗ xr : ε ∗
List s ys ∧ Sorted_o f (xs1 ++ xs2)} ⇒
{List s ys ∧ Sorted_o f xs ys ∗ x : S xs ∗ xl : ε ∗ xr : ε} ⇒
{(∃ys, List o xs ∧ Sorted_o f xs ys){o/s} ∧
D∃ys, sasn ((List o xs ∧ Sorted_o f xs ys){o/s}) ∗
x : S xs ∗ xl : ε ∗ xr : ε}

send x s
{(∃ys, List o xs ∧ Sorted_o f xs ys){o/s} ∗

x : ε ∗ xl : ε ∗ xr : ε}
{x = ε ∗ xl = ε ∗ xr : ε} ⇒ {all_ST ε}

}
{all_ST ε}

We once again use Löb-rule to introduce the assumption that the
called methods have the method-specifications we desire. In order to
prove that MS_spec holds we need to know that MS_spec holds, in order
to recurse. Because the rule is tied to the step-index, using later basically
turns the proof into an induction proof over the step-indexes.

In the appendix, decorated program B.4 has all reduction steps for
verifying the simpler, serial implementation that uses calls to sort. The
reason for only having a sequential version as a more formal decorated
program is readability. With the actions between the two subprocesses
being interleaved, it makes it hard to use the frame-rule to shorten the
predicates inside the Hoare-triples. Without the interleaving, everything
but one list can be framed out while that list is sorted. So while proving

48 Chapter 4. Case Studies

that each list can be recursively sorted, the proof-context only contains
predicates relevant to that list. With the interleaving, each command
would require a new framing to remove the predicates unnecessary for
that command.

49

Chapter 5

Related Work

We are aware of no other work that integrates Session Types in Hoare-
logic and Separation Logic in the way we are proposing. But there has
been related work done that integrates Session Types and Separation
Logic. This chapter aims to summarize some of this work.

Hussain, O’Hearn and Petersen have done some work on integrating
a subset of Session Types into a very small language based on Concur-
rent Separation Logic (CSL) [11]. They first define a simple language
containing only sending, receiving and parallel composition which they
type using the same subset of Session Types that we do – i.e., only send-
ing and receiving messages.

They then define an imperative language based on CSL, where the
pre- and postconditions in their Hoare-triples are Session Type typing
judgements. They then give a translation method that can translate any
valid program in their Session Type subset into an equivalent imperative
program.

Their result shows that it is possible to use the shared-memory ap-
proach of CSL to embed the message-passing based Session Types logic.

The main difference between the work of Hussain et al. and this the-
sis is that their approach will never work across computers. They rely
on shared memory to deliver their messages, which limits the applica-
bility to communication within a single computer. This thesis proposes
no such constraints, and it would be possible to implement our model
in a way such that it transfers data between computers.

50 Chapter 5. Related Work

Chen and Honda present a different take on the same goal of proving
correctness of distributed programs in [4]. Instead of trying to integrate
reasoning about protocols into a large framework for reasoning about
state, – using e.g. Separation Logic – Chen and Honda integrate rea-
soning about state into their framework for reasoning about protocols:
choreographies and Session Types.

They propose introducing system-level observers – i.e. runtime mon-
itors – that verify that specifications embedded within the protocols
hold. These observers maintain a state which allows for reasoning across
actions within a protocol as well as information exchanged in different
protocols within the same choreography.

The difference between our proposed model and that of Chen et al.
is quite stark. Our model allows proving functional correctness of dis-
tributed programs, while the runtime monitors introduced by Chen et
al. are simply able to observe whether or not the communication is valid
as it happens. Furthermore, the predicates used to describe the states
of communication is less expressive than the assertion logic we have
defined.

51

Chapter 6

Discussion

6.1 Discussion

6.1.1 The necessity of the protocol map

The language we have proposed in this thesis currently needs to know
all the protocols of all methods which we later start. As previously
mentioned, having to explicitly state each protocol is not uncommon
amongst Session Types implementations. Session-J, for instance, has the
same requirement. However, why was it necessary to introduce this
requirement? If we compare it with method-calls – which is what our
model of start is based upon – there is no such requirement. The ax-
iomatic semantics of method-calls is able to call methods without know-
ing their specifications, but start needs the Session Type before we can
specify its operational semantic.

The difference is that method-calls should function as if the method-
body was inlined instead of the method call – sans renaming of param-
eters. So the operational semantics of method calls transfer the (partial)
stack to the method body and then continues with the stack extended
with the return value. With start, the understanding is that the started
method should run in parallel. It is thus not important what changes to
the stack or heap that the started method does, because it does not need
to be passed back to the process that issued the start-call. Once start has
been called, information can only be sent back and forth between the
two processes by send or recv and only as long as it follows the proto-
col of the instantiated channel. The operational semantics of start then
extends its Session Type map with the dual of the method’s protocol,

52 Chapter 6. Discussion

which instantiates the channel to the started process. Thus before the
channel can be instantiated for either the started or the starting process,
the protocol must be known.

Session types describe the remaining actions of each channel’s pro-
tocol, where Hoare logic places requirements on the precondition and
describes the resulting state. That means that there is a fundamental dif-
ference in the direction of the reasoning. In the proof of Rule-Start, any
use of the method specification for the startable method requires prov-
ing the precondition (a : T) and will only yield the fairly useless proof
of all_ST : ε. Similarly, proving the postcondition of the rule requires
proving x : T. Thus both cases requires proving a typing judgement
where the only context available is the precondition true, which is of no
help. If we contrast this with method calls, the precondition P of the
triple proves the precondition of the method specification, and the post-
condition of the method specification proves the postcondition of the
triple. Because we need proof of the Session Type typing judgement to
both use the method specification and to prove the triples postcondition,
we have been unable to automatically infer the required Session Type.

6.1.2 Limited to decidable propositions

The biggest limitation in our language is that it requires decidable asser-
tions within protocols. To apply the send-rule, the assertion covering the
data we want to send must be decidable. As explained in Section 3.4.1,
this is to satisfy the frame property. To prove the frame property, it must
be known if removing the frame from the combined heap will cause a
memory fault. If a memory fault occurs, then the command would not
be safe, but, because we have an assumption of safety, this leads to a
contradiction, thus proving that no memory fault could have occurred.

In the simpler commands, such as read, it is very explicit when the
command requires memory from the added frame. For read, this is a
case-analysis on heap-membership. If the requested object was outside
the frame, the frame property holds. However, if the requested object
was in the frame, then we have a memory fault and the above mentioned
contradiction on safety.

For sending, we have no inherent property to do a case analysis on.
To prove that the command has the frame property, we need to prove
that the assertion holds without the heap being extended by a frame.
However, we have no way of knowing if the assertion covers the frame

6.1. Discussion 53

or not. Our solution was to require assertions to be decidable, which
enables a case-analysis on whether or not the assertion holds in the
frame-less heap.

Another possible solution would be to introduce the notion of mar-
shaling. A marshaling consists of a pointer to an object, as well as the
subheap that includes the referenced data structure. Any values found
by recursive walk of any referenced data structures are also included in
the marshaling. In the end, the marshaling will contain the entire mem-
ory footprint of an object and all its children. When a pointer is to be
sent on a channel, the subheap that needs to be transferred is the mar-
shaling of the object pointed to by the transferred variable. A memory
fault would be triggered if the marshaling overlapped with the frame.

The assertion would need to hold with a singleton stack consisting
only of the variable being sent and the heap resulting from the mar-
shaling. However, having only the starting point of the marshaling in
the stack does not limit the assertion from being able to mention things
outside of the marshaled data structure. A pointsto-predicate could use
a heap-address instead of a pointer from the stack, which enables men-
tioning addresses outside of the marshaled data structure. To counter
this, the notion of marshalability could be introduced. A predicate
would be marshalable with respects to a variable if the predicate holds
in the marshaled heap starting from the variable.

The reason why marshaling was not chosen over decidability was
that we were unsuccessful in defining a marshaling that worked with
our assertion logic. Untyped marshaling, which does not utilize knowl-
edge of the object’s structure, is not upwards closed on heaps. Because
the untyped marshaling simply copies over the structure present in the
heap, the result can change if the extended heap contains additional data
for the data structure. With statically typed marshaling, which requires
all of the data structure to be present, we were unable to construct rules
for building marshalings that were compatible with Separation Logic.
As soon as a pointsto-predicate was added to a marshaling, the mem-
ory footprint of the marshaling would become the entire object. So if
another pointsto-predicate for a different field is available, there is a con-
tradiction because the heaps between the predicate and the marshaling
can not be disjoint.

54 Chapter 6. Discussion

6.2 Further Work

There are many interesting directions this project could take. This sec-
tion attempts to describe some of the most obvious.

Marshaling Firstly, the marshaling described in Section 6.1.2 should be
investigated more. During this thesis, marshaling was attempted and,
although unsuccessful then, we believe a version of marshaling can be
defined in such a way that it could remove the limitations of decidabil-
ity. We attempted both an untyped and a statically typed marshaling
but have later discovered a dynamically typed definition to marshaling
that might be successful. In short, the marshaling should keep track
of the fields that have been added to each marshaled object. This way
the marshaling result stays the same if the heap is extended, and the
memory footprint of the marshaling can be kept to a minimum.

Branching Ordinary Session Types have support for branching within
protocols, whereas our current implementation does not. By extending
our integration to include the branch and choice, we could verify commu-
nication corresponding to much more complicated protocols. The lan-
guage primitive for branch would take a list of labels and commands,
and the Hoare-triple for each command would have a precondition con-
sisting of the protocol corresponding to the label. For choice, the post-
condition would simply be the protocol corresponding to the label.

Intuitively the Hoare-triples should be similar to

∃i, l = li
{x : ⊕〈l1 : T1, . . . , ln : Tn〉} select x l {x : Ti}

Rule-Choice

{x : T1} c1 {Q} . . . {x : Tn} cn {Q}
{x : &〈l1 : T1, . . . , ln : Tn〉} offer {l1 : c1, . . . , ln : cn} {Q}

Rule-Branch

Delegation Adding support for delegation would also allow for the
verification of a larger set of programs. With delegation, a program
does not have to finish a protocol if it has a connection to another party
that is capable of finishing it.

The standard definition of Session Types does this by extending the
types of data send and receive actions can send to also include channels
and their protocol. Our implementation would need new primitives

6.2. Further Work 55

for two reasons: Firstly, the assertion logic we use in the predicates
inside Session Types does not allow for reasoning about the current
active channels. But equally important, the Hoare-triple for sending
retains the sent predicate, which is against the intentions of delegation.
Once a channel is delegated, it is no longer an active channel of the
sender. The operational semantics of sending a channel would thus
have to remove knowledge of the delegated channel from the session
type map. The receiving rule would have a Hoare-triple similar to Rule-
Recv, but sending a delegate would require a triple like

{x : ![S].T ∧ y : S} send_c x y {x : T ∧ y = null}
Rule-Send-C

where ![S].T is the protocol to send a delegate.

Fixing the Frame Rule As we mentioned in Section 3.3, we have been
unable to mechanize the proof the Frame-rule, as the underlying frame-
work our language depends on does not support building a Separation
Logic over both the heap as well as the Session Type map. To construct
such a logic Charge! – the underlying framework – can be extended
with type-classes that allow the construction of a Separation Logic from
a Separation Algebra and an existing Separation Logic. Once such a
Separation Logic can be built, proving the rule is trivial, as the proof
relies solely on the frame-property which we have extended to frame
both the heap and Session Type map already.

57

Chapter 7

Conclusion

This thesis presents an integration between Session Types and Hoare-
logic that allows for the verification of distributed programs. Using the
example of distributed merge sort, the functional correctness is shown
using step-by-step verification. This shows that our integration enables
verification of the functional correctness of a recursive, distributed pro-
gram implemented in our language.

We have taken an existing implementation of a language and ex-
tended it with sending, receiving and a notion of Session Types. The cor-
rectness of our extended language is proven using mechanized proofs
implemented in Coq. By building on top of an existing language, we
believe we have built a good foundation for verifying distributed pro-
grams. The inherited Hoare-triples from the existing language enables
the verification of any sequential sections of programs. The distributed
aspects of programs can be encoded using our send, recv and start primi-
tives. The communication between processes can then be specified using
Session Types and later verified using our added Hoare-triples.

Bibliography 59

Bibliography

[1] Andrew W Appel, Paul-André Mellies, Christopher D Richards,
and Jérôme Vouillon. A very modal model of a modern, major,
general type system. ACM SIGPLAN Notices, 42(1):109–122, 2007.

[2] Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal. Charge!
In Interactive Theorem Proving, pages 315–331. Springer, 2012.

[3] Jesper Bengtson, Jonas Braband Jensen, Filip Sieczkowski, and Lars
Birkedal. Verifying object-oriented programs with higher-order
separation logic in coq. In Interactive Theorem Proving, pages 22–
38. Springer, 2011.

[4] Tzu-Chun Chen and Kohei Honda. Specifying stateful asyn-
chronous properties for distributed programs. In CONCUR 2012–
Concurrency Theory, pages 209–224. Springer, 2012.

[5] Robert Dockins, Aquinas Hobor, and Andrew W Appel. A fresh
look at separation algebras and share accounting. In Programming
Languages and Systems, pages 161–177. Springer, 2009.

[6] Simon Gay and Malcolm Hole. Subtyping for session types in the
pi calculus. Acta Informatica, 42(2-3):191–225, 2005.

[7] Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–
101, 1987.

[8] Charles Antony Richard Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12(10):576–580, 1969.

[9] Kohei Honda, Vasco T Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based
programming. In Programming Languages and Systems, pages 122–
138. Springer, 1998.

60 Bibliography

[10] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based
distributed programming in java. In ECOOP 2008–Object-Oriented
Programming, pages 516–541. Springer, 2008.

[11] Akbar Hussain, Peter W O´Hearn, and Rasmus L Petersen. On
separation, session types and algebra.

[12] DE Knuth. Vol. 3: Sorting and searching. Addison-Wesley series in
computer science, 1973.

[13] Nancy G Leveson and Clark S Turner. An investigation of the
therac-25 accidents. Computer, 26(7):18–41, 1993.

[14] Jacques-Louis Lions et al. Ariane 5 flight 501 failure, 1996.

[15] Hannes Mehnert and Jesper Bengtson. Kopitiam–a unified ide for
developing formally verified java programs. Technical report, Tech-
nical Report ITU-TR-2013-167, IT University of Copenhagen, 2013.

[16] John C Reynolds. Separation logic: A logic for shared mutable
data structures. In Logic in Computer Science, 2002. Proceedings. 17th
Annual IEEE Symposium on, pages 55–74. IEEE, 2002.

[17] John C Reynolds. An introduction to separation logic. Engineering
Methods and Tools for Software Safety and Security, pages 285–310,
2008.

[18] Hongseok Yang and Peter O´Hearn. A semantic basis for local rea-
soning. In Foundations of Software Science and Computation Structures,
pages 402–416. Springer, 2002.

61

Appendix A

Source Code

A.1 Access to Source Code

The source code for the implementation of our language, as well
as our mechanized proofs are available on GitHub. It can be
found in the branch fangel of the repository https://github.com/
jesper-bengtson/Java.
A direct link to the relevant branch is
https://github.com/jesper-bengtson/Java/tree/fangel.

At the time of this thesis, the latest commit was
a079d8b290d54fdd8c235d4002f7164383a774ed.

Charge! The language is built using the Charge!-framework which can
be found at the repository
https://github.com/jesper-bengtson/Charge
Our language has been built against the framework at commit
2eaed7666da6074d2e2354ef85ad216b39cf15d8

A.2 Admitted Proofs

The existing language by Bengtson et al. contained a list of admitted
proofs, which we will not enumerate here. The only admitted yet ap-
plied lemma that we introduced is heap_eq_dec

heap_eq_dec , ∀(a b : heap), {a === b}+ {a =/= b}

62 Appendix A. Source Code

which is the decidability lemma for heap equivalence. It serves to allow
case-analysis on whether or not two heaps are equivalent. Two heaps
are defined as being equivalent if the object- and array-sections of the
heap are equivalent. And equivalence on maps is defined as the maps
having equal domains and every key within the domain having equal
values.

Intuitively, it is decidable whether or not heaps are equivalent, but,
because of the implementation of maps, we have been unable to produce
a proof of this.

There are some Hoare-triples, which are not used in the thesis that has
been left unproven. The rule for allocating object was left unproven by
Bengtson et al., and then additionally we have left Arr-Write unproven.

The most important rule that we have left unproven is the Frame-
rule. As mentioned earlier, this is because of a shortcoming in the un-
derlying framework, Charge!, as it is not currently possible to define
a Separation Logic that is separate on both the heap and Session Type
map. See Section 6.2 for more information.

63

Appendix B

Decorated Programs

Decorated Program B.1: Sample::server living up to Server_spec′

{x : ?y, {y = n}.!z, {z = y + 2}.ε}
a = recv x
{∃v, (y = n){a/y} ∧ a = v ∗ x : !z, {(z = y + 2){v/y}}.ε} =
{∃v, a = n ∗ a = v ∗ x : !z, {z = v + 2}} ⇒
{a = n ∗ x : !z, {z = n + 2}} ⇒
{a = n ∧ a + 2 = a + 2 ∗ x : !z, {z = n + 2}.ε} =
{(a = n ∧ b = a + 2 ∗ x : !z, {z = n + 2}.ε){a+2/b}}

b = a + 2
{a = n ∧ b = a + 2 ∗ x : !z, {z = n + 2}.ε} ⇒
{b = n + 2 ∗ x : !z, {z = n + 2}.ε} =
{(z = n + 2){b/z} ∗ x : !z, {z = n + 2}.ε}
{(z = n + 2){b/z} ∧ Dsasn ((z = n + 2){b/z}) ∗

x : !z, {z = n + 2}.ε}
send x b

{∃v, (z = n + 2){b/z} ∧ b = v ∗ x : ε} ⇒ {x : ε}
{all_ST ε}

64 Appendix B. Decorated Programs

Decorated Program B.2: Sample::client living up to Client_spec′

{a = n}
x = start Sample::server′ p′

{a = n ∗ x : ?y, {y = n}.!z, {z = y + 2}.ε} =

{a = n ∗ x : !y, {y = n}.?z, {z = y + 2}.ε} =

{(y = n){a/y} ∗ x : !y, {y = n}.?z, {z = y + 2}.ε} ⇒
{(y = n){a/y} ∧ Dsasn ((y = n){a/y}) ∗

x : !y, {y = n}.?z, {z = y + 2}.ε}
send x a
{∃v, (z = n){a/z} ∧ a = v ∗ x : ?z, {z = y + 2}{v/y}.ε} =

{∃v, a = n ∧ a = v ∗ x : ?z, {z = v + 2}.ε} ⇒
{a = n ∗ x : ?z, {z = n + 2}.ε} ⇒

b = recv x

{∃v, a = n ∧ (z = n + 2){b/z} ∧ b = v ∗ x : ε} =

{∃v, a = n ∧ (b = n + 2) ∧ b = v ∗ x : ε} ⇒
{a = n ∧ b = n + 2 ∗ x : ε} ⇒
{b = n + 2}

Decorated Program B.3: MergeSort::Sort living up to Sort_spec

{List l xs}
x = start MergeSort::MS p
{List l xs ∗

x : ?i, {List i xs}.!o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε} =
{List l xs ∗

x : !i, {List i xs}.?o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε} ⇒
{(List i xs){l/i} ∗

x : !i, {List i xs}.?o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε} ⇒

65

{(List i xs){l/i} ∧ Dsasn ((List i xs){l/i}) ∗
x : !i, {List i xs}.?o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε}

send x l

{∃v, (List i xs){l/i} ∧ l = v ∗
x : ?o, {(∃ys, List o ys ∧ Sorted_o f xs ys){v/i}}.ε} ⇒
{∃v, (List i xs){l/i} ∧ l = v ∗

x : ?o, {(∃ys, List o ys ∧ Sorted_o f xs ys){v/i}}.ε} ⇒
{List l xs ∗ x : ?o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε} ⇒
{x : ?o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε}
r = recv x
{∃v, (∃ys, List o ys ∧ Sorted_o f xs ys){r/o} ∧ r = v ∗ x : ε} ⇒
{(∃ys, List r ys ∧ Sorted_o f xs ys) ∗ x : ε} ⇒
{∃ys, List r ys ∧ Sorted_o f xs ys}

Decorated Program B.4: MergeSort::MS living up to MS_spec

{x : ?i, {List i xs}.!o, {∃ys, List o ys ∧ Sorted_o f xs ys}.ε}
l = recv x

{∃v, (List i xs){l/i} ∧ l = v ∗
x : !o, {(∃ys, List o ys ∧ Sorted_o f xs ys){v/i}}.ε} ⇒
{List l xs ∗ x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε}

if l.length() ≤ 1{
{List l xs ∗ x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε∧

l.length() ≤ 1} ⇒
{List l xs ∗ x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε∧

Sorted_o f xs xs} ⇒
{∃ys, List l ys ∗ x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε
∧ Sorted_o f xs ys} ⇒
{∃ys, (List l ys ∧ Sorted_o f xs ys) ∗

x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε} =

66 Appendix B. Decorated Programs

{(∃ys, List o ys ∧ Sorted_o f xs ys){l/o} ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε}
{(∃ys, List o ys ∧ Sorted_o f xs ys){l/o} ∧
Dsasn ((∃ys, List o ys ∧ Sorted_o f xs ys){l/o}) ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε}

send x l

{∃v, (∃ys, List o ys ∧ Sorted_o f xs ys){l/o} ∧ l = v ∗ x : ε} ⇒
{x : ε} ⇒
{all_ST ε}

}else{
{List l xs ∗ x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε∧
∧ l.length() � 1} ⇒
{List l xs ∗ x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε}
p = MergeSort::split l
{(∃r1 r2 xs1 xs2, r. f st 7→ r1 ∗ List r1 xs1 ∗ r.snd 7→ r2 ∗

Listr2xs2 ∧ xs = xs1 ++ xs2){p/r} ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε} ⇒
{p. f st 7→ r1 ∗ List r1 xs1 ∗ p.snd 7→ r2 ∗ List r2 xs2 ∧

xs = xs1 ++ xs2 ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε}
⇒ (framing)
{p. f st = r1 ∗ List r1 xs1}

l = p. f st
{∃v, l = r1{v/l} ∧ (p. f st = r1 ∗ List r1 xs1){v/l}} ⇒
{l = r1 ∧ p. f st = r1 ∗ List r1 xs1} ⇒
{List l xs1} ⇒
{(List l xs1){l/l}}

sl = MergeSort::sort(l)

{(∃ys, List r ys ∧ Sorted_o f xs1 ys){sl/r}} =
{∃ys, List sl ys ∧ Sorted_o f xs1 ys} ⇒
{List sl ys1 ∧ Sorted_o f xs1 ys1} ⇒

67

⇒ (end framing)
{List sl ys1 ∧ Sorted_o f xs1 ys1 ∗ p.snd 7→ r2 ∗ List r2 xs2 ∧

xs = xs1 ++ xs2 ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε}
⇒ (framing)
{p.snd = r2 ∗ List r2 xs2}

r = p.snd
{∃v, r = r2{v/r} ∧ (p.snd = r2 ∗ List r2 xs1){v/r}} ⇒
{r = r2 ∧ p.snd = r2 ∗ List r2 xs2} ⇒
{List r xs2} ⇒
{(List l xs2){r/l}}

sr = MergeSort::sort(r)
{(∃ys, List r ys ∧ Sorted_o f xs2 ys){sr/r}} =
{∃ys, List sr ys ∧ Sorted_o f xs2 ys2} ⇒
{List sr ys2 ∧ Sorted_o f xs2 ys2} ⇒
⇒ (end framing)
{List sl ys1 ∧ Sorted_o f xs1 ys1 ∗ List sr ys2 ∧

Sorted_o f xs2 ys2 ∧ xs = xs1 ++ xs2 ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε} ⇒
{List sl ys1 ∗ List sr ys2 ∧ Sorted_o f xs1 ys1 ∧

Sorted_o f xs2 ys2 ∧ xs = xs1 ++ xs2 ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε} =
{(List l1 ys1 ∗ List l2 ys2 ∧ Sorted_o f xs1 ys1 ∧

Sorted_o f xs2 ys2){[sl,sr]/[l1,l2]} ∧ xs = xs1 ++ xs2 ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε}

s = MergeSort::merge(sl, sr)
{(∃ys, List r ys ∧ Sorted_o f (xs1 ++ xs2) ys){s/r} ∧

xs = xs1 ++ xs2 ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε} ⇒
{∃ys, List s ys ∧ Sorted_o f xs ys ∗

x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε} =

68 Appendix B. Decorated Programs

{(∃ys, List o ys ∧ Sorted_o f xs ys){s/o} ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε} ⇒
{(∃ys, List o ys ∧ Sorted_o f xs ys){s/o} ∧
Dsasn (∃ys, List o ys ∧ Sorted_o f xs ys){s/o}) ∗
x : !o, {∃ys, List o ys ∧ Sorted_o f xs ys)}.ε}

send x s
{∃v, (∃ys, List o ys ∧ Sorted_o f xs ys){s/o} ∧ s = v ∗ x : ε} ⇒
{x : ε}
{all_ST ε}

}
{all_ST ε}

